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Ode to Bayes Theorem 
 
Bayes Theorem, a cornerstone of probability  
A way to update our beliefs, with clarity and sobriety  
It tells us how to revise, when faced with new information  
To move from doubt to certainty, with elegant precision 
 
We start with a hypothesis, a thought, or a conjecture  
We seek out evidence, to see if we can verify  
We use Bayes Theorem, to calculate the chance  
That our hypothesis holds true, in this circumstance 
 
It's a mathematical rule, that helps us to deduce the likelihood of something,  
With our current produce 
Of knowledge and data, we can use it to infer  
The truth of a matter, without any demur 
 
So let us embrace Bayes, and all that it can teach us  
To update our views, and not become too suspicious  
For with this powerful tool, we can find the right path  
And make better decisions, with math 

-  ChatGPT 

Introduction 

Parameters are ‘constants’ that are used to characterize various kinds of systems. 
Examples include: 

• Physical – such as the temperature and mass of an object, and Hubble’s constant 
• Statistical – population characteristics such as means and standard deviations 
• Processes – such as efficiency, throughput, and time-to-failure  
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Parameters are determined by taking measurements so that any estimate will have some 

uncertainty depending on the size of the data and the underlying model. To take action based on 
a parameter depends not only on its estimated value but also on its uncertainty. If we are not 
confident we have a good value, we might be more hesitant to act.  

One of the critical issues in learning a parameter is deciding when our confidence is high 
enough to take action. This especially applies when there isn’t enough data to use classical 
frequentist methods. 

Some example applications include: 

• Measuring a constant c with a noisy measurement instrument with sparse data like the 
James Webb telescope or the Large Hadron Collider. You might assume the noise is 
Gaussian, so measures are of the form c + normal(mean = 0, std = s) = normal(mean=c, 
std = s). Both c and s are unknown and need to be estimated from the observations, and 
so are themselves random variables. 

• The process of generating the measures is not controllable in the Deming sense. This can 
happen when measuring the progress in novel development efforts. This also can be 
treated as a Gaussian process with unknown parameters. (Some might prefer Weibull.) 

• The measurements are expensive to obtain. This can happen for expensive products' 
reliability testing (time to failure). In this case, one can treat the l and k of the Weibull 
distribution as random variables. 

• One wants to learn the half-life of a decay process. In this case, one would treat the l in 
an exponential distribution as a random variable. 

• One wants to determine the bias of an unknown coin when one doesn’t want to do 
thousands of flips. 
This leads us to take a Bayesian perspective:  Every measure has some uncertainty. The 

probability of the measured quantity is the confidence one should have in believing its value.  
Bayesian parameter learning (BPL) is a remarkably powerful technique for estimating 

parameter values and their uncertainty from a small set of measures. There are two key ideas 
behind are found: 

1. The quantity you want to estimate is a parameter of a known probability 
distribution for which you have a formula. For example,  

a. The bias of a coin would be the p in the Bernoulli distribution.  
b. A quantity measured with a noisy instrument would be the mean of a 

normal distribution. 
2. The parameter is a continuous random variable. 

These can be found in in (Fenton & Neil, 2019) and (Kruschke, 2014). 
The formula used in the first assumption gives P(measurent|parameters) for each 

measurement. What you want is P(parameter|measurents). This article describes how to do this 
with repeated application of Bayes theorem with each measurement. It has three parts: 

1. An overview of random variables 
2. The toolkit needed to complete BPL 
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3. Parameter learning 
 
As a how-to paper, it contains discussions of how to implement the techniques with 

examples in python, with occasional code snippets. I assume the reader is familiar with 
elementary probability theory, including random variables, probability distribution functions, 
cumulative distribution functions, conditional and joint probability, and Bayes theorem. That 
said, I will provide a summary review of the concepts as they are used. 

 
In this article, I used discretization for the calculations. It is particularly well-suited for 

the problems mentioned above. In each case, there are only one or two parameters.  Higher-
dimensional problems may require more advanced numerical methods such as MCMC or 
variational. 

To fully understand the techniques, I strongly recommend that the reader write programs 
to implement them and see if they can reproduce the examples. In Python, discretization methods 
for Bayesian learning can be implemented using NumPy and SciPy. The examples in this paper 
were built using my own PDF class module and am considering making it open-source. Anyone 
interested in this module can contact me on LinkedIn. 

Random variables 

Random variables are used to specify uncertain quantities. Their values are not specified 
by a single value like regular variables. Instead, they are specified by a probability density 
function (PDF). Recall that a PDF is a non-negative function with total integral one.  

 
Also, recall that a subset, E, of the support of the PDF is called an event. The probability 

of the random variable having a value in E is the integral of the PDF over E. That is, 
 

𝑃(𝐸) = &𝑃𝐷𝐹(𝑡)𝑑𝑡
	

"
 

Equation 1 

 
Examples of random variables include: 

• The bias towards coming up heads when flipping an unknown coin. 

• The value of a physical constant when measured by an instrument through a noisy channel. 

• The values resulting from a development or manufacturing process that may or may not be 
controllable. 
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The Toolkit 

This section introduces the tools needed to apply BPL to a dataset. These are useful in 
their own right, and anyone interested in applying probability theory should know them. There 
are four tools in the kit: 

 
1. Building empirical PDFs from a set of samples 
2. Generating samples from a PDF 
3. Computing functions of PDFs to get a new PDF 
4. Applying Bayes theorem 

 
This section describes each of these in detail with examples and hints for implementing in 

python. 

Empirical PDF’s 
Building empirical PDFs There are only a small finite set of PDFs specified by 

parameters (normal, uniform, exponential, Weibull, …) and an uncountably many PDFs. Most 
PDFs found in nature are not parameterized. These are often called empirical, as they arise from 
measurements. They also arise in simulations. 

Here is a straightforward numerical way to build an empirical PDF from a large data set:  
1. Collect data from the population or process you are interested in. This can be done 

through experiments, observations, or simulations. 
2. Divide the data into equally spaced bins. The number of bins will depend on the size of 

your data set and the level of detail you want in your PDF. 
3. Calculate the frequency of each bin, which is the number of data points in the bin divided 

by the total number of data points. 
4. Build a discrete function using bin centers as the domain, and the bin frequency as the 

range. 
5. Use interpolation to create a continuous function from the lowest bin center to the highest 

bin center. 
6. Numerically find the total integral of the continuous function. 
7. Find the PDF by normalizing the continuous function by dividing by the integral. This 

ensures the total integral = 1. 
These steps can be easily implemented in python using NumPy and SciPy functions. 

 
To show how this works in practice, I applied the above algorithm to various random 

samples of a normal distribution with mean = 10 and standard deviation = 2 (Figure 1).  
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Figure 1. Examples of matching empirical PDFs to normal with mean= 10 and sd= 2 

Random Sampling 
Taking random samples from A PDF Recall that a cumulative distribution function 

(CDF) is a function that describes the probability that a random variable will take on a value less 
than or equal to a given value. The CDF is defined as: 

𝐶𝐷𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 	& 𝑝𝑑𝑓(𝑡)𝑑𝑡
#

$%
 

Equation 2 
 
where X is the random variable and x is a specific value the random variable might take. 

The CDF is a non-decreasing function that ranges from 0 to 1, with the properties that CDF(x) = 
0 for all x less than the minimum possible value of X, and CDF(x) = 1 for all x greater than or 
equal to the maximum possible value of X. 

 
Here is the general procedure for generating a random sample of a random variable’s 

PDF: 
1. Compute the cumulative distribution function, the CDF. Note that since the CDF is 

monotonically increasing, it has a well-defined inverse, 
2. Numerically compute CDF-1. 
3. Take a random sample, s, from the unit interval, [0,1].  
4. Then CDF-1(s) is a random sample of the random variable. 

 
Steps 1. and 2. are readily done in python using the sci-kit learn integrator and 

interpolation functions. For step 3, one can use python’s NumPy’s uniform distribution sampler. 

 
Figure 2 shows why this works. 
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Figure 2. 

 
Note that evenly distributed values of the CDF map to values bunched around the PDF 

mean, as one should expect. 

Functions of random variables  
A function of a random variable is a mathematical function that takes the random variable 

as input and produces a new random variable. The function can be any function, such as a linear 
function, a polynomial function, an exponential function, or a trigonometric function. Functions 
of random variables are often used in probability and statistics to analyze and model real-world 
phenomena, such as multi-step processes with uncertain values.  

For a simple real-world example, suppose you have to estimate the cost of a task, and you 
are uncertain of the number of hours and the cost per hour. Then the cost would be the quotient 
of these two random variables. 

A practical way to compute the PDF of any function of one or more random variable is to 
use Monte Carlo simulation. Suppose you have a set of random variables (V1, V2, … Vs), and 
you want to compute  F(V1, V2, … Vs). 

 
1. Generate samples from the distribution of each random variable. 
2. Evaluate the function on the set of samples using array methods.  
3. Find the PDF of the array found in step 2 using the above method for finding empirical 

PDFs. 
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For example, suppose you want to estimate the cost of painting a bridge. However, you 

are unsure of how many painter-hours hours it will take, and you are uncertain of the cost per 
hour.  You can use Pareto 3-point estimates (least, expected, most) to specify the uncertain 
values. Suppose: 

• Duration 3-point estimate is (150, 200, 300) hours.  
• The rate 3-point estimate is (15, 20, 35) dollars/hour. 

 
What is needed is the product of the two estimates. To find the product, apply the Monte 

Carlo procedure described above. 

• Convert the estimates into triangular distributions (see Figure 3). 
• Take a large number, N,  of random samples of each of the triangular distributions to get 

two arrays.  
• Multiply the arrays element by element 
• Find the empirical PDF of the array of products  

 
Figure 3 shows the two factor PDFs and an approximation of their product. If the jaggies 

are bothersome, they can be removed with a smoother. 
 

 
Figure 3 

 

Conditional and Joint Probability 
Recall conditional probability is a measure of the probability of an event occurring, given 

that another event has already occurred. It is defined as the probability of event A occurring, 
given that event B has occurred and is written as P(A|B).  It is central to causal analysis and 
machine learning. It allows us to make more informed predictions about the likelihood of future 
events based on past events or other information that we have. 

The formula for calculating conditional probability is  Equation 3 
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𝑃(𝐴|𝐵) = 	
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)  

Equation 3 

 

Where 𝑃(𝐴 ∩ 𝐵) is the probability of both events A and B occurring, and P(B) is the 
probability of event B occurring. 𝑃(𝐴 ∩ 𝐵) is called the joint probability. Often it is denoted 
P(A, B). 

 

The motivation for Equation 3 can be seen in the Venn diagram (Figure 4). 
 

 
Figure 4 

 
The probability of event A occurring is represented by the area of circle A, and the 

probability of event B occurring is represented by the area of circle B. The probability of both 
events happening at the same time is represented by the area of the overlap between the two 
circles. If we know B has occurred, then P(A|B)  is seen as the quotient of the two areas. 

 Recall that if two random variables, X and Y, are independent, then  

𝑃(𝑋, 𝑌) = 𝑃(𝑥)𝑃(𝑌) 
Equation 4 
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Bayes Theorem 
Note it is evident from Figure 4 that 𝑃(𝐴|𝐵) ≠ 𝑃(𝐵|𝐴), even though they are often 

confused.The relationship between the two is both elementary and powerful. It is called Bayes 
theorem. (Equation 5). 

 
 

𝑃(𝐴|𝐵) = 	
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)  

Equation 5 
 
Bayesians consider probability as a measure of belief in the likelihood of an event. They 

name the terms of the equation as follows: 

• P(A) is the prior belief 
• B is sometimes called an observation 
• P(B|A) is the likelihood 
• P(A|B) is the posterior 
• P(B) is called the marginal 

Bayesians say we update the prior to account for the observation to get the posterior. 

 
Here is a standard discrete example: 
Suppose there is a test for a disease that afflicts .02 of your risk group. Table 1 has the 

statistics for the test results. These are typical probabilities. 

 

Test Result If Sick If Well 

Pos 0.95 0.05 
Neg 0.03 0.97 

 

Table 1:  
 
We want to know P(Sick|Test Pos), but the test gives P(Test Pos|Sick) = .95. So, we 

should apply Bayes theorem.  

 

𝑃(𝑆𝑖𝑐𝑘|𝑇𝑒𝑠𝑡	𝑃𝑜𝑠) =
𝑃(𝑇𝑒𝑠𝑡	𝑃𝑜𝑠|𝑆𝑖𝑐𝑘)𝑃(𝑆𝑖𝑐𝑘)

𝑃(𝑇𝑒𝑠𝑡	𝑃𝑜𝑠)  

Equation 6 
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We know P(Sick) = .02 and so P(well) = .98. To get P(Test Pos), we sum up the 

probabilities of how ‘Test Pos’ could arise. 
 

P(Test Pos) =  P(Test Pos)|Well)P(Well) + P(Test Pos|Sick)P(Sick) 
                   = (.05)(.98) + (.95)(.02) 

                  = .068 
 

Substituting these values into Equation 6 gives us P(Sick|Test Pos) @ .28. Having only 
28% confidence that you are sick leads to very different actions than believing you are 95% 
likely to be sick. 

Many find this calculation surprising, but the confusion of P(A|B) with P(B|A) is 
common and has serious consequences. One example is the ‘prosecutor’s fallacy’:  a logical 
error that occurs in criminal trials when a prosecutor argues that the probability of a defendant 
being innocent, given the evidence, is very low. This is problematic because it confuses the 
probability of the evidence given the defendant's guilt (which is typically high) with the 
probability of the defendant's guilt given the evidence (which is typically lower). This has led to 
many false convictions. Another example is the overestimate of the number of Covid infections 
given the results of the home test kits. 

Marginal Probability 
We will need one more theorem.  

Given two random variables, X and Y and the pdf, f(x,y), for the joint probability P(X,Y), then the 
pdf, fx, for X is  

 

𝑓#(𝑝) = 	& 𝑓(𝑥, 𝑦)𝑑𝑦
	

&'(()*+(-)	
 

Equation 7 
Simply, one can find the individual pdf of X from the joint pdf, by taking the partial 

integral over the Y support. This is often called marginalizing. 

Bayesian Parameter Learning 

 

This part is intended to be a gentle introduction to the topic. There are two examples.  
1. The one-parameter case – The classical coin bias problem. This is both elementary and 

amusing.  
2. The two-parameter case -  Estimating the measured quantity value with a noisy 

measurement process. 
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The key idea is to treat the parameters as random variables and learn their distributions 

using successive applications Bayes theorem (Equation 8). 

 

𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠|𝑑𝑎𝑡𝑎) = 	
𝑃(𝑑𝑎𝑡𝑎|𝑝𝑎𝑟𝑎𝑚𝑡𝑒𝑟𝑠)𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

𝑃(𝑑𝑎𝑡𝑎)  

Equation 8 
The choice of the likelihood function is based on what is being modeled.  For example, 

population measurements are usually normally distributed, while one would use Weibull for 
time-to-failure analysis. 

One Parameter 
Examples of one-parameter distributions in the Bernoulli, the binomial, and the 

exponential. Let’s consider the coin bias problem and the Bernoulli distribution. It is both 
instructive and amusing: 

Imagine you have a coin that will be used in a betting game. You will agree to the game 
if you are sufficiently confident the coin is fair. However, you do not have time to make 
thousands of flips.  Somehow, you have access to a BPL program for learning the bias. You 
decide to take the bet if you are 75% confident that the bias is between .45 and .55, 

To apply BPL to this problem, we note that the bias towards heads is the p in a Bernoulli 
distribution (Equation 9). 

𝑃(ℎ𝑒𝑎𝑑𝑠|𝑝) = 𝑝 

𝑃(𝑡𝑎𝑖𝑙𝑠|𝑝) = 1 − 𝑝 

Equation 9 
The bias p is a value in the unit interval. If p =1, all the flips are heads. If p= 0, all the 

flips are tails. If p = .5, heads and tails are equally likely.  
Normally, p is considered to be a scaler. To apply PBL, we treat the bias as a random 

variable. Also note that while coin flipping is a discrete process, the bias is a continuous random 
variable. The PDF of p  is a function over the interval [0,1].  

Let’s try this out. Figure 5 shows the graphs of the sequence of the learned PDF using a 
set of observations (Heads, Heads, Tails, Tails, Tails, Tails, Heads, Tails) and an initial uniform 
prior. 

Here are the steps for the first observation: 

• Choose the initial prior pdf for the parameter based on your contextual information.  

For example, if the coin is known to be from the US Mint, it is likely to be fair, and so you 
might choose the prior to be a normal distribution with a .5 mean and a small standard 
deviation, consistent with the mint manufacturing specifications. The implication of this 
choice is that you believe the coin is fair, and it will take substantial evidence to convince 
you otherwise.  
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On the other hand, if you know nothing about the coin, the safest prior is that all values of p 
are equally likely. Since the support of the parameter is the closed interval,[0, 1], we would 
set Prior(p) = 1 for all p in the support. . This is called a ‘uniform prior.’ Using a uniform 
prior is sometimes called ‘the principle of indifference’. It is generally the best choice to 
avoid your own prejudices. 

• Discretize the support of the prior, the unit interval, into equal intervals, (p1, …,pn). In most 
cases, n can be 100. 

• Build an array L= (l1,…,ln) by applying the numerator of equation 6 for each pi and equation 
7 for the likelihood of the observation.  
For example, if we have a prior uniform, n =100, and the observation is Heads. Then  pi = 
i/100,  P(pi )= .01 for each I, P(Heads|pi) = pi , and so li = pi/100. 
 

• Calculate the posterior of equation 6 by interpolating  L into a function and normalizing it so 
its integral is one area over the domain. See Figure 5 below. This normalization step is 
essential as accounts for the dominators in the Bayes quotient. 

For the following observations, use the above steps and the posterior of the previous 
calculation as the prior for the next.  This technique is called Bayesian refinement. 

 

 

 
Figure 5 

 
Note that for the first two runs, the observations contain no tails. So, the bias PDF is 

monotonically increasing, and there is some likelihood that the bias is near 1. However, as the 
graph for the third run shows, when there is a tail, the algorithm shows zero probability that the 
bias is 1. 
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Recall that the criterion for the coin being fair is that we P(E|p) ³ .75, with E being the 
interval  [.45, .55]. This is visually displayed in Figure 6 below. The examples show the PDFs 
for 100, 200, 300, and 400  flips with 53% heads. The green areas are the regions above the fair 
interval. Note, as expected, the PDF’s narrow and the fair region covers an increasing percentage 
of the area under the curve. 

 
 
Figure 6 

 
You can decide the coin is fair enough with 300 flips and you can be more confident at 

400 flips. 
To further test the algorithm, let's consider some edge cases. As shown in  Figure 7: 

• When there are zero heads in 20 flips, the curve is shifted to the left with a peak at 0. 
• When there are 0 heads in 200 flips, it is virtually certain that the bias is 0. 
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• When there is 1 head in 20 flips, the curve looks very different. It is still shifted to the left 
but shows 0 probability at b = 0 since there was a head. 

 
Figure 7 

 

 
 

Two Parameters  
 
This section describes how to extend the above 1-parameter method to estimate both 

parameters of a 2-parameter distribution from a small set of observations. This technique will 
work for any two-parameter probability distribution function. These include normal, log-normal. 
Weibull, and beta distributions. Note that in each of these have independent parameters. So, to 
learn the parameters, we can apply Equation 4 and Equation 8 to get Equation 10. 

 
 

𝑃(𝑝/, 𝑝0|𝑂𝑏𝑠) = 	
𝑃(𝑂𝑏𝑠|𝑝/, 𝑝0)𝑃(𝑝/)P(𝑝0)

𝑃(𝑂𝑏𝑠)  

Equation 10       
We will elaborate the digitized approach as the successive refinement of the 1-parameter 

case . In that case, we built an array of likelihood values for the parameter of the local of the 
parameter using Bayes theorem.  For the 2-parameter version, digitize each parameter and build 
a 2-dimensional array of likelihoods using Equation 10. Then to get the likelihood for and then 
apply by taking the margins of the array to get discrete arrays of the parameter pdfs. Then 
interpolate and normalize them to get the 

Assume we have: 

• A 2-parameter pdf, P(p1, p2, x) 

• Assume a finite set of observations, Obs = {O1, …, On}.  
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Like the 1-dimensional case, we initialize the process with the first observation. 

• Choose the initial priors for the parameters, p1 and p2, based on your contextual information.  

For example, suppose we want to learn the mean and standard deviation from some a set of 
samples using a normal likelihood function. A good choice of prior of the mean depends on 
the nature of the subject matter beliefs. Two reasonable choices be a uniform distribution or 
a triangular distribution with the low being the lowest possible observation, the high being 
the highest, and the mode being a likely middle value.  A prior for the standard deviation 
could be a uniform distribution with low equal 0, and high being the range of the support of 
mean prior. 
 

𝑝𝑟𝑖𝑜𝑟/(𝑥) = 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑙𝑜𝑤, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, ℎ𝑖𝑔ℎ, 𝑥) 
 

𝑝𝑟𝑖𝑜𝑟0(𝑥) = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0, ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤, 𝑥) 
Equation 11 

 

• Discretize the support of the priors, prior1 and prior2, into equal intervals, (p1,1, …,p1,n) and 
(p2,1, …,p2,n).In most cases, n can be 100. 

• Build a 2d array L= (Li,j) by applying the numerator of Equation 10 to pair (p1,i, p2,j) and the 
observation 
For example, if we have a normal model, the likelihood function is 
 

𝐿1,3 =
1

𝑝0,3√2𝜋
𝑒
$/04

)5&$(!,#
($,%

6
$

𝑝𝑟𝑖𝑜𝑟/U𝑝/,1V𝑝𝑟𝑖𝑜𝑟0(𝑝0,3) 

• Apply a discrete version of Equation 4, by summing the rows and columns to a get a 
discretized version of the likelihoods of the parameters. 

𝑝𝑎𝑟𝑚/,1 =	W𝐿1,3

	

3

, 𝑝𝑎𝑟𝑚0,3 =	W𝐿1,3

	

1

 

• To get the posterior pdfs of the parameters interpolate parm1 and parm2  arrays into 
functions and normalize them so that their integrals have unit area over their domain. See 
Figure 5 below. 

For the following observations, proceed with Bayesian refinement using the above steps 
with the posteriors of the previous calculation as the priors for the next. 

Just knowing the parameters’ pdf can be useful. For example, suppose we want to 
measure a constant c in a noise environment. If the noise is Gaussian, then the process is normal 
with mean c. Then with experimental measures of c, the pdf of the learned mean gives us the 
probability estimate of the constant. We may not care about measuring the noise. If we need to 
measure the noise, we can use the standard deviation distribution. 

Now that we have the pdfs for the parameters, there is one more step to get to learned pdf 
of the process that generated the observations. The trick here is to do a Monte Carlo simulation 
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using the parameters’ pdfs to get an array of samples of learned pdf using the sample generation 
described above and then generate the final pdf by using the empirical pdf (also described above) 
from the array of samples. Specifically, if we have a model 2-parameter model, pdf, M(parm1, 
parm2) 

• Make an array, p1, of 10,000 samples of the parm1 pdf. 
• Make an array, p2, of 10,000 samples of the parm2 pdf. 
• For n = 1, 10,000, take a sample of the pdf M(p1n, p2n) to get an array of samples 

of the pdf to be learned. 
• Normalize the histogram of the above array and interpolate the learned pdf. 

Two Examples 
1. Gaussian Process 

For the first, assume the observations come from a Gaussian process with a normal 
distribution. The subject matter experts have picked a triangular prior with parameters (1, 4, 15). 
See Equation 8. With that choice the prior sigma is chosen to be uniform from .1 to 14, the span 
of the mu priors (Equation 9) 

 
Figure 8 
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Figure 9 

To test the algorithm, I generated samples from a normal distribution with mu = 10 and 
sigma = 3. Note that these choices are within range of the priors, but significantly different. For 
example, the mean of the mu prior is 6.6666…. The following figures show the results of the 
algorithm for 

 

 
Figure 10 
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Figure 11 

 
Figure 12 

 
Figure 13 
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Figure 14 
As one might expect, the distributions narrow around the test-case parameters. Also, with 

as few as 7 random samples, the method provides an inkling of the parameter values. With only 
100 samples, there is little uncertainty in the parameter values. 

Example2. Lognormal Process 

For a second example, let’s try to learn the pdfs of the mu and sigma of a lognormal 
distribution. While normal distributions model additive processes, lognormal model 
multiplicative processes. In this case, mu is not the mean, but a scale parameter, and sigma is the 
shape parameter. See this Wikipedia article for more explanation. 

In this example, we will use uniform priors for mu, (0, 2), and sigma, (.1, 5). See Figure 
15 and Figure 16. 

The observations were generated by sampling a lognormal pdf with mu = 1 and sigma = 
0.3. 
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Figure 15 

 

 
Figure 16 
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Figure 17 
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