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Introduction 
Accurately	estimating	the	return	rates	of	extreme	weather	events	is	crucial	for	informed	
planning	and	risk	management.	Traditional	methods,	which	rely	on	fixed	historical	
averages,	often	overlook	the	inherent	uncertainty	and	variability	in	climate	patterns.	Using	
Bayesian	parameter	learning,	we	can	continually	refine	our	estimates	of	weather	event	
return	rates	based	on	observed	data	while	explicitly	accounting	for	uncertainty.	This	
approach	enables	planners	to	make	more	adaptive	and	resilient	decisions.	
This	whitepaper	outlines	the	detailed	steps	for	calculating	return	rates	of	weather	events	
using	Bayesian	techniques.	

Step-by-Step Calculation 

1. Model the Weather Event as a Poisson Process 
We	model	the	arrival	of	extreme	weather	events,	such	as	floods	or	storms,	as	a	Poisson	
process.	This	is	characterized	by	the	parameter	λ	(lambda),	which	represents	the	average	
event	occurrence	rate	(e.g.,	storms	per	year).	The	Poisson	distribution	gives	the	probability	
of	observing	a	given	number	of	events,	k,	in	a	specified	time	period.	

𝑃(𝑘|λ) = 	
λ!𝑒"!

𝑘!
		

Note	even	though	k	is	discrete,	the	λ	is	continuous.	It	turns	out	that	the	return	rate,	R,	is	the	
reciprocal	of	the	λ.		

𝑅 =	
1
λ
	

So,	the	strategy	is	first	to	learn	the	λ	and	then	use	Monte	Carlo	methods	to	learn	the	R.	

2. Data Collection 
Collect	historical	data	on	the	number	of	events,	k,	observed	in	each	year	from	2010	to	2022	
(1,	0,	0,	1,	0,	1,	0,	1,	0,	0,	0,	0,	2,2).	



3. Bayesian Update 
Using	Bayesian	inference,	we	update	our	belief	about	λ	using	the	Poisson	distribution	for	
the	likelihood	function	and	the	yearly	events	as	the	ks.	We	started	with	a	uniform	prior	
uniform	distribution	as	a	minimal	assumption.	Here	are	a	sampling	of	the	Lambdas:	

	

4. Calculate the Return Rate 
The	return	rate,	R,	is	the	reciprocal	of	λ.	We	need	to	compute	its	PDF.	We	do	this	using	a	
Monte	Carlo	method:	

• Take	about	50,000	samples	of	the	λ	PDF	using	the	inverse	CDF	method.		
• Create	an	array	of	the	reciprocals	of	the	samples.	
• Build	a	normalized	histogram	of	the	array	of	reciprocals	with	optimized	bin	sizes.	
• Interpolate	the	histogram	to	get	the	return	rate	PDF	



	

This	PDF	fully	represents	the	uncertainty	in	the	return	rate,	allowing	planners	to	see	the	
range	of	possible	return	intervals	for	the	weather	event.		

Risk Tolerance and Decision Making 
With	the	return	rate	PDF	in	hand,	decision-makers	can	incorporate	their	risk	tolerance	into	
planning:	
-	High-Risk	Aversion:	For	organizations	with	a	low-risk	tolerance,	planning	might	focus	on	
high	percentiles	of	the	return	rate	distribution	(e.g.,	the	95th	or	99th	percentile).	This	
ensures	preparedness	for	rare	but	severe	events	that	could	have	catastrophic	
consequences.	
Moderate	Risk:	Planners	with	higher	risk	tolerance	may	focus	on	median	or	lower	
percentiles,	accepting	that	extreme	events	may	occur	less	frequently	but	not	preparing	for	
the	worst-case	scenarios.	

This	chart	of	the	inverse	of	CDF	supports	these	this	decision.	

	



	

Conclusion 
Using	Bayesian	parameter	learning	to	calculate	weather	event	return	rates,	we	can	create	
more	accurate,	probabilistic	estimates	of	event	frequencies.	This	method	allows	for	
continual	updating	as	new	data	becomes	available,	ensuring	planners	have	the	most	up-to-
date	information	on	which	to	base	their	decisions.	Additionally,	by	incorporating	risk	
tolerance	into	the	process,	decision-makers	can	better	balance	cost,	preparedness,	and	the	
likelihood	of	extreme	weather	events,	making	their	strategies	more	robust	and	adaptable	to	
future	uncertainties.	


